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The self-consistent Fourier configurational approach to the excluded volume has been used to investigate the
intrinsic viscosity of linear and cyclic polymer chains in the crossover region following the Zimm-Hearst
scheme with preaveraged hydrodynamic interaction. The results are compared to those obtained with other
theoretical approaches and are shown to be in good agreement with extensive experimental results. We
predict the ratio of the intrinsic viscosity of cyclic polymers to that of linear chains, g,, will change in a peculiar
way with the strength of the excluded volume interaction. Owing to the non-affine expansion of the chains
and to its interplay with hydrodynamic interaction g, increases slightly at very low strength and then it
quickly decreases below the unperturbed value, in agreement both with perturbation theory results and with

experimental data.
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INTRODUCTION

One of the most common ways to characterize a polymer
in dilute solution is to measure the intrinsic viscosity [#],
defined as!

. N5
[n] cl—r’l;l) s ( )

where 5 and 75 are the viscosity of the solution and of
the pure solvent, respectively, and c is the concentration
expressed in grams of polymer per unit volume.

In the theoretical study of intrinsic viscosity it is
necessary to take into account the hydrodynamic
interaction among chain segments, which renders the
problem quite intractable even for isolated molecules in
theideal state if some simplifying approximation were not
made. In his fundamental paper, Zimm? tackled the
problem for linear chains using the preaveraged
approximation®, as done later for cyclic chains by
Bloomfield and Zimm*. In non-ideal conditions, the
theoretical problem is further complicated by the
coupling of hydrodynamic interaction with good solvent
expansion. Most results therefore were obtained using
semi-empirical approaches or assuming either an affine
expansion or an asymptotic behaviour for the excluded
valume interaction?.

On the other hand, ‘exact’ results could be obtained
using perturbation theory. This approach was employed
long ago to study, for example, the expansion factor o
and ay of the mean—square radius of gyration S? and of
the hydrodynamic radius Ry, respectively:

a2=§%/S2 (2a)
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ay = Ry/ RHO (2b)

The subscript zero indicates the unperturbed, ideal state.
To the first order in z, the universal parameter giving the
strength of the excluded volume interaction, the results
are!

aZ=1+cz

cs.=1276  ¢.=1571 (3a)

ag=1+cyz ¢y, =0.609 (3b)
The subscripts L or C refer to the linear and cyclic chain,
respectively. The corresponding expressions for the
intrinsic viscosity could only be obtained later® in the
preaveraged approximation. Defining

a3 =[n)/[n]o (2¢)

where the power of three stresses that the intrinsic
viscosity has the spatial dimensions of a volume. The
results are:
p=1+c,z cpr=1.14 c,.=1.18 (3¢)
The self-consistent Fourier configurational approach
was recently proposed®” to study the non-ideal state and
applied to the description of the so-called crossover, or
intermediate, region of chain expansion with z<2 in the
universal regime®. Neglecting local stereochemical
details, the chain- is described as formed by N freely
jointed segments (or springs) of mean-square length 12
connecting adjoining beads. The general: chain
configuration is decomposed in Fourier normal modes,
which may be subsequently used to decouple the dynamic
equations. The chain free energy, written in the
assumption of a. Gaussian distribution for the perturbed
interatomic distances, is then minimized with respect to
all the conformational degrees of freedom. The resulting
equations, giving the expansion ratios of the mean-square
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normal mode amplitudes, are solved in a self-consistent
way through a numerical procedure for both the linear
and the cyclic chain. From these expansion ratios, all the
equilibrium quantities may be obtained among which the
radius of gyration, the hydrodynamnc radius and the
mean-square distances {rj> and reciprocal average
separations (r,k‘> between beads j and k. The results®
were shown to be qu1te satisfactory in the crossover
region by a comparison with other, more sophisticated
theoretical approaches and with Monte Carlo
simulations.

In this paper, we report the study of the intrinsic
viscosity for linear and cyclic chains in the Zimm limit
using the same approach. We employ the numerical
results previously obtained and express them in a suitable
analytical form for computational convenience. The
Zimm-Hearst scheme?°® with preaveraged hydrody-
namic interaction will be followed, as it emerges naturally
within the present approach. The results will be then
compared with extensive experimental results and with
other theoretical equations recently proposed. We will
also briefly discuss the well-known Weill-des Cloizeaux
equation!®

oy =gty 4)

THEORETICAL APPROACH

Let us consider a polymer solution in steady flow
conditions with the fluid velocity going along x and its
constant gradient y along z. In the absence of the polymer,
the fluid velocity at the location of the jth bead at time ¢ is
therefore

vt =72(.0) ()

and the intrinsic viscosity is given by!

[71]— G, 020,10 (6)

where N, is the Avogadro’s constant, M the polymer
molecular mass and N the number of chain beads. In the
above f,(j,t) is the x component of the force exerted by the
solvent upon the jth bead at time ¢ and is equal to the
intramolecular force experienced by it.

The dynamic quantities appearing in equation (6) may
be obtained from the linear Langevin equation, written as

£(7,0) = [RG.O) —v(i,t)] =T(,t) (7

Here, I' is the stochastic Brownian force, { is the bead
friction coefficient, R(j,t) its vector position and v(j ) the
fluid velocity in the absence of that particular bead. v{j,t)
is given by the sum of the original velocity and the
hydrodynamic perturbations due to the other beads
expressed through the preaveraged Oseen tensor!%3;

v(j,0) =v'9(.1) +

Z Cra Ak, ) @)

Nsk= 1
k#j

It is convenient now to introduce the Fourier normal
modes to decouple the Langevin equation!!. Let us define
in general

Rig.0= Y. R(.0Q(/) (9a)

with the corresponding antitransform given by

R(.t)=— %R(q HQ*(q.4) (9b)

The asterisk indicates the complex conjugate. The
Fourier coefficients Q(g,j) are, for the linear chain,

0(q4)=1/2 cos[q(j — 1/2)]

g=mn/N  n=12,... ,N—1 (10a)

and for the cyclic chain
Q(gj)=e"
q=2nn,/N n,=12,...,N—1 (10b)

q

In the following the appropriate transform and {g} set
will be used when dealing with the linear or the cyclic
chain. These modes are orthogonal even in non-ideal
conditions for a cyclic chain due to its symmetry, but are
only approximately orthogonal for the linear chain in the
presence of good solvent expansion. The hydrodynamic
interaction has only a minor influence' >!3. However, we
use the transforms of equations (10) for simplicity,
neglecting non-orthogonality effects as in reference 8.

In either case, we have!!

=2
Rig. oy =N 2@ i1
(|Rig, )*> @) (11)
where
11(q)=4sin*(g/2) (12)

and @>(q) is the expansion ratio of the ¢ mode mean-
square amplitude, that is'*

={|R(g, P> /|R(g, > Do (13)

Let us omit now the fluctuating Brownian force in
equation (7):

£(j,0) = {[R( 1) — v ,0)]
(14)

2 <rin ik, 1)

Nsk=1
k#j

By multiplying by Q(q,) and summing over j, after
replacing f(k,t) with its antitransform using a notation
analogous to that used in equation (9), we arrive at:

T(q, ={[R(g, 1) — (g, 1)] — ((/6mnsDi(q, r)T(q)(
15)
—(4/6nnsl){ y }f(q',r)T(q,q»
q #q
where
T4q)==Y Y 0@.N0*q. k)<ry'> (16a)

Nj¢k=1

T@)=T(@4.9 (16b)
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For the cyclic chain, usmg the transform in equatlon (10b)
and the symmetry (r;'>= <nj- k,) (ryl ii-x2- These
equations reduce to

Tqq)= if g#¢' (17a)
- N/2
T(g)=21 Y cos(gli—k|)Xr ry2 "I (17b)
k=1

For the linear chain T(g,q4')#0, however, we neglect
altogether the last sum in equation (15), thus following
the Zimm-Hearst approach®°. This corresponds to
neglecting the off-diagonal elements of the matrix G in the
language of reference 12. In ideal conditions, this gives a
very small error (~1.59% at most), which quickly
decreases with increasing mode number. Therefore, we
will write henceforth:

f(q,r)%l)[ﬁ(q,t)—v“”(q,t)] (18)
with
Wg)= 1+ /6mnsHT(q) (19)

where T(g) is given by equation (16) for the linear chain
and by equation (17b) for the cyclic chain.

As for the intramolecular force in equation (7), it was
obtained in reference 11 from the general Boltzmann
statistical weight of a perturbed chain within the
Gaussian approximation. In Fourier space, it is given by:

3kBT u(q)
@*(q)

The Langevin equation for the ¢ mode is therefore
written in the x projection:

3kgT plg)
2 d*g)

flg.n=- 4.t (20)

(g, )+ [x(qt)—“’(qt)] X@.n @)

where X(q,0)=T.(q,t)/v(q) is the x component of the
Brownian force. It is assumed to be uncorrelated with the
other components and its quadratic average is specified
through the fluctuation-dissipation theorem®

f)A(q o—1) 22)

A and & stand for the Kronecker delta and the Dirac delta
function, respectively.

The general solution of equation (21) is formally given
by

(X(q,)X*(q’,t')> =2NksT

X(g, t)=x(g, 0)exp[ — t/1(q)]

0) r
”‘C") dr[X( TR i) (“‘)’ )]exp[ (t—tYe@] (23)

0

where the relaxation times t(g) are given by

(&)

"D=30T warv@

(24)
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Of course, an analogous equation holds also for Z(g,t)

without the term depending on the fluid velocity.
Going back to the intrinsic viscosity, we first express

equation (6) as a sum over the separate Fourier modes:

NA

M N Z(ﬂ(q, 1Z*(q, 1) (25)

4

[n]=

From equations (20), (22) and (23), together with
equation (5), we eventually get:

2Ms%()

(26)

NP #(g)
6Mns (o nigv(g)

The excluded volume expansion influences the intrinsic
viscosity in two ways: first, because of the change in the
elastic potential through the explicit appearance of ¢%(g),
and secondly because of the change in the hydrodynamic
interaction through the perturbed reciprocal averages
appearing in v(q) (equations (16), (17) and (19)). Within
the Gaussian approximation, these are given by

Crat>=(6/m)! 2> 12 27)

and the mean-square distances are given by

2

<,k>——z°‘(q)|Q(q D-0@hE  (28)
}

Thus the set {&@*(g)}, containing the expansion ratios of
the normal modes mean-square amplitudes (see equation
(13)), completely determines the intrinsic viscosity. In
turn, it may be obtained from self-consistent energy
minimization within the Fourier configurational
approach?®,

NUMERICAL PROCEDURE IN THE ZIMM LIMIT

It may be seen from equations (26) and (19) that a,?
depends in general on two adimensional variables: the
excluded volume parameter z, which uniquely determines
&*(g) in the universal regime® (N—o0) and the draining
parameter ({/6nnsl). However, for large molecular
weights the latter effectively disappears, at least for
collective modes. In this case T(q)> 1, and increases as
the value of N increases. Therefore, since ({/6mngl) is
usually of order unity, we may put

{ =
o)~gT@  (N-o) 29)

corresponding to the non-draining, or Zimm, limit2.
From equation (26) we get

N,Pn

[n]= M

(@)
30
2 L@ 9

Also, we can go to the continuous limit and replace the
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sums in equations (16) and (17) with integrals:

1 1
T(q)=NI j dx'[ dy<rydn,> cos(mngx)cos(nny)  (31)
0 0

where x=j/N, y=k/N and g=nn,/N.
1/2
Tc(q)=2NlJ cos(2nnx)<ry, ydx (32)

o]

where x =k —j|/N and q=2nn,/N.
In the unperturbed state the above integrals may be
evaluated analytically?4:

T{q)=2(12N/zn) *[C(nn,) — S(rnn,)/2nn,] (33a)
T-(q)= (67N)"2cos(mn,)J o(mn,) (33b)

where C(x) and S(x) are the Fresnel integrals, defined as

X

C(x)= (21:)_”2de cos z/z!/?

0

(34)

S(x)=Q2n)"~ 1/2f dzsin z/z!/?
o

and J,(x) is the Bessel function of order zero.

In equations (31) and (32) the lower limits of
integration were set to zero, instead of 1/N. This implies
that the condition j#k in equations (16a) and (17b) is
ignored, corresponding to the inclusion of the
hydrodynamic self-interaction. However, this has a
negligible effect as long as N — oc, and opens the way to a
universal description of chain dynamics. Moreover, it has
the great theoretical advantage of treating the polymer
chain and the solvent on the same footing; in fact, the
latter is assumed to be a structureless, incompressible
continuum in the derivation of the Oseen tensor!-3.

We carried out the numerical calculations of the
intrinsic viscosity (from equations (30), (12) and (31) or
(32) together with equations (27) and (28)) using for the
function &%(g) the universal results previously obtained in
the crossover region®. Defining = 3B(2n/q)'/?/4, with B
such that z=3B\/N /4, we used the following analytical
expressions closely fitting the numerical results for
computational convenience:

(i) Linear chain
adq)=dzq) + [aZ(q) — did@)])/ng

qg=nny/N ng=12,...,N—1

q

(35a)

where for the first mode
aZ(g)=[147.52+183%+38z%]*/15 (35b)
and for internal modes:

a2(q)=[1+ 1074285+ 527%]15 (35¢)

(ii) Cyclic chain

aHq) =& (q) + [@2n(q) — a2 (@)])/(ng— 1)
(36a)
q=2nn,/N n,=23,...,N—1
where for the second mode
&Znlg)=[1+117+55z% +5233]*1'5 (36b)

For the internal modes &2,(g) is still given by equation
(35c), whereas the first mode must be treated separately:

a2, (q)=[1+155+70.822+305%]%*5  (36c)

Also, due to the great computational accuracy and
computer time required to numerically evaluate the
double integrals of equation (31), we used the linear chain
expression only for the first 20 modes. For higher modes
we employed equation (32) with half integer values of n,
that is putting effectively g =nn,/N as for the linear chain.
This entailed throughout errors of less than 0.6 % for the
relaxation times.

RESULTS AND DISCUSSION

The expansion ratios a, =[#n]/[#], for the linear and the
cyclic chain in the crossover region are shown in Figure 1
as a function of the universal variable z. The two curves
are essentially coincident for z<0.8, the linear chain then
shows a larger «, for increasing values of z. Actually, this
is opposite to what is found at low values of z (see later).
The differences, however, are very small, less than about
39 at z=2. This trend is contrary to what would be
expected if viscosity were mostly dictated by the coil’s
size. In fact, for a given z the cyclic chain always has a
larger of than the linear chain®.

For z—0 our curves may be expressed as in equation
(3c)withe, ; =1.09and ¢, . =1.12; ¢, , is very close to the
value 1.06 which is obtained perturbatively within the

Figure 1 The expansion factor o) =[#n]/[1], plotted versus z in the
crossover region for the linear open (Op) and cyclic (Cy) chains. The
curves proposed by Douglas and Freed!” (DF) and by Barrett!® (B) for
linear chains are also shown. The DF curve for cyclic chains lies above
their curve for linear chains. However it is very close to it and is not
shown here for clarity

POLYMER, 1988, Vol 29, September 1651
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3 po-

Figure2 A comparison of the calculated curve of o] versus z for linear
chains with experimental data!® obtained from dlfferent polymers in
various solvents. The symbols are the same used in the original figure'®
from the book of Yamakawa'. The results collected by Miyaki and
Fujita?® are not shown, but follow the same trend tending to be
somewhat smaller for zx 2 with a slightly larger scatter at high z

Zimm-Hearst scheme’ . These two coefficients show that
for z < 1 the cyclic chain displays a slightly larger increase
of intrinsic viscosity.

For the sake of comparison, we also show in Figure 1
the theoretical curves proposed by other authors in the
Zimm limit:

(i) Douglas and Freed equations!’ (DF):

32z/3
a,?=(1+322/3)3/8[1+a,,<—2/—>:| z<0.15

1+32z/3
(37a)
o) =(6.4412)** " (1 +q,) 220.75
(37b)
where a,= —0.276 for the linear chain and a,= —0.264

for the cyclic chain and v=0.592;
(ii) Barrett equation®® (B):

ad=(1+3.82+19z%)*'®  (linear chain) (38)
The general form of the DF equations was obtained
through renormalization group arguments. The a,
coefficients in equation (37) were fitted to reproduce the
perturbation theory results for z—0 (the values ¢, ; = 1.06
and c, .= 1.18 were chosen'®!”). The Barrett equation
for the linear chain, on the other hand, was proposed from
a combination of Monte Carlo and perturbative results
(with ¢, ; = 1.14) for evaluating the reciprocal averages of
1nterest followed by a careful numerical solution of the
Kirkwood-Riseman integral equation®'®. The three
curves are in rather good agreement with each other. Our
results are closer to those of Barrett.

Our curve (see Figure 2) is also in good agreement with
experimental results'®-2? on various polymers in different
solvents, especially in the range 0<z<1.5. As a word of
caution, we note that partial draining effects may become
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relevant in very good solvents, so that oz,? could no longer
be a universal function of z, as suggested first by Miyaki
and Fujita2°

For a better comparison between the linear and the
cyclic chain, we show in Figure 3 the ratio g,:

In= ['I]c/ ['I]L =9q.o°‘$,c/°‘$,1. (39)

The ideal state value g, , is equal ‘within the numerical
accuracy to that of Bloomfield and Zimm*, namely 0.659.
It is remarkable that, as anticipated, we calculate a slight
increase of g, at low z, followed by a larger drop for
z2Z 0.2, whereas Bloomﬁeld and Zimm* with an affine,
uniform expansion model predict?! a monotonous
decrease of g, and Douglas and Freed predict an increase
to an asymptotic, constant value. An initial uprise is
required by perturbation theory, which to thefirst order
in z gives

@ /ol =1+(c,c—C,)z=1+0038z  (40)

whereas the drop at larger z has been observed
experimentally?%24, although some conflicting reports
also exist?® and the situation does not seem to be
completely settled. This apparently odd behaviour may
be understood by considering that at low values of z the
effect of hydrodynamic interaction embodied in T(g)
(equation (16)) changes very little with respect to the ideal
state and g, follows the larger increase in dimensions of
the cyclic chain®. The contrary is true at higher values of z,
where the larger decrease of hydrodynamic interaction for
the linear chain is more relevant.

A quantity frequently referred to is the Flory and Fox
viscosity constant ®, defined by!**

[1].=y
[n]c=®(128%)**/M (41b)

(65%)**/M 41a)

The ratio ®/®,=a, /a3 for linear and cyclic chains is
shown as a function of z and of «g in Figures 4a and b,
respectively. The calculated ideal chain values are again
equal, within the numerical accuracy, to those obtained
by Bloomfield and Zimm?*, that is @, , =2.812 x 102 and
®, = 1.852 x 102*. The curves obtained from the DF

0.64 1 1 1 1 i 1
0.01 ¢0.02 0.05 0.1 0.2 0.5 1 2

Figure 3 The ratio g, = [#]c/[#]L of the intrinsic viscosity of cyclic and
linear chains plotted versus z
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b/dg

0.01  10.02 0..05 0.1 0.2 0.5 1 2

¢ /g

oS

Figure 4 (a) The ratio of the viscosity constants d)/tbo:a,?/ocg (see
equation (41)) for linear open (Op) and cyclic (Cy) chains as a function of
), the present results; (~—-) the results of Douglas and
Freed17 (b) The ratio of the viscosity constants versus ag

equations'’ are also shown. In either case, ®/®, is
predicted to decrease more in the cyclic than in the linear
chain, in qualitative agreement with Bloomfield and
Zimm*. For z—0, first order perturbation theory yields

O/®y =0, /a3=1+{c,—3cs/2)z 42)
and therefore the initial slope in the plot ®/®, versus o
(Figure 4b)) is 2(c,/c5) — 3, therefore steeper for the cyclic
chain.

The experimental results for ®/®, versus ag show too
much scatter to permit any meaningful comparison.
However our curve lies somewhat below the
experimental points!®, although following the correct
trend.

The related plot of a} versus a3 is shown in Figure 5,
where our results are compared to the experimental data
reported by Miyaki and Fujita®® and by Yamakawa'®
(only a best-fit line through the experimental points is
reported here for clarity). The calculated curve for the
linear chain compares rather satisfactorily with the results
quoted by Miyaki and Fujita, especially for small
expansion but increasing discrepancies are present for
larger 2. Incidentally, partial draining effects2® may be
partly responsible for the differences present among the
experimental results.

We summarize our numerical results shown in Figure 1
with the following analytical expressions, accurate to

within 0.6 % throughout the range 0<z<2:

a3, = (1+3.642+3.1072)¥/1° @a)
ad o= (1+3.722+2.75z%)3/1° (43b)
CONCLUSIONS

The self-consistent Fourier configurational approach,
together with the use of the Gaussian approximation for
the interatomic distances, permitted us to calculate the
expansion ratio «, of the intrinsic viscosity for linear and
cyclic chains. Our results are in very good agreement with
available experimental data in the crossover region, even
better than those previously obtained® for the radius
of gyration with the same method. In fact, due to the
Gaussian approximation, the expansion factor of the
most collective normal mode amplitudes, and in
particular that of the first one, may be slightly
overestimated. If that were the case, af would be
somewhat overestimated too, by more than cx,?. In fact, in
the first case the first mode is much more important than
in the second case, where the function T(q), slowly
decreasing with increasing g (see equations (16) and (17)),
buffers its importance compared to that of the other
modes. This consideration, speculative as it is, might
explain the reason for the small discrepancies with
experiments for the linear chain (see, for example, Figures
4b and 5).

We finally note that the Weill-des Cloizeaux
expression!® (equation (4)) seriously fails, at least for
linear chains. This may be seen in the crossover region
from our values of a,,, which are < a2 for z<0.7 and only
marginally larger® for higher values of z. Also, equation
(4) does not fit with exact perturbative results for z—0, in
that to the first order in z it would require:

oy ~afuy=1+(cs+cy)z=1+1.885z 44)

0.4} /
7 -
J'/ /A‘
LA
P
4 P
VA
0.3 S L0
Py
s
P
o o /’,'
3 0.2 s
o st
8
/f" o
0.1F Z
0.0 e ] | ) i
0.0 0.1 0.2 0.3 0.4 0.5

log ag

Figure 5 Calculated plot of o} versus o for linear open (Op) and cyclic
(Cy) chains ( ). Experimental results from linear open chains are
shown as best-fit lines for simplicity. (-----) is the curve taken from the
analogous plot!® of Yamakawa'!; (—-—--) is the curve from the data of
Miyaki and Fujita?® for atactic polystyrene in cyclohexane and
methylethylketone. We note incidentally that other results of Miyaki
and Fujita® for polystyrene m benzene having log «g=0.33 show a
roughly parallel shift to larger o] values and have a smaller slope than
the data collected by Yamakawa'®
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This is definitely much larger than the correct value of ¢, ; .
Moreover, it implies that

/0, = “3/“53: ay/ots 45)

contrary to our predictions (see also ref. 8) and to
experimental observations?!, namely that «,/ag changes
very little from unity, unlike ®/®,,.
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