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The self-consistent Fourier configurational approach to the excluded volume has been used to investigate the 
intrinsic viscosity of linear and cyclic polymer chains in the crossover region following the Zimm-Hearst 
scheme with preaveraged hydrodynamic interaction. The results are compared to those obtained with other 
theoretical approaches and are shown to be in good agreement with extensive experimental results. We 
predict the ratio of the intrinsic viscosity of cyclic polymers to that of linear chains, g,, will change in a peculiar 
way with the strength of the excluded volume interaction. Owing to the non-affine expansion of the chains 
and to its interplay with hydrodynamic interaction #, increases slightly at very low strength and then it 
quickly decreases below the unperturbed value, in agreement both with perturbation theory results and with 
experimental data. 

(Keywords: self-consistent Fourier configurational approach; non-affine expansion; linear and cyclic chains; Zimm-Hearst 
scheme; intrinsic viscosity) 

INTRODUCTION (X H = Rn/RHo (2b) 

One of the most common ways to characterize a polymer The subscript zero indicates the unperturbed, ideal state. 
in dilute solution is to measure the intrinsic viscosity [q], To the first order in z, the universal parameter giving the 
defined as 1 strength of the excluded volume interaction, the results 

are 1 
[t/] =l im r/--r/s (1) es2= 1 +Cs z CS,L = 1.276 CS,C = 1.571 (3a) 

c~O C/']S 

where ~/and r/s are the viscosity of the solution and of ~n = l + c a z  cn~=0.609 (3b) 

the pure solvent, respectively, and c is the concentration The subscripts L or C refer to the linear and cyclic chain, 
expressed in grams of polymer per unit volume, respectively. The corresponding expressions for the 

In the theoretical study of intrinsic viscosity it is intrinsic viscosity could only be obtained later 5 in the 
necessary to take into account the hydrodynamic preaveraged approximation. Defining 
interaction among chain segments, which renders the 
problem quite intractable even for isolated molecules in 3 = [-~/]/[~/]o (2c) 
the ideal state if some simplifying approximation were not ct~ 
made. In his fundamental paper, Zimm 2 tackled the where the power of three stresses that the intrinsic 
problem for linear chains using the preaveraged viscosity has the spatial dimensions of a volume. The 
approximation a, as done later for cyclic chains by results are: 
Bloomfield and Zimm 4. In non-ideal conditions, the 
theoretical problem is further complicated by the ~_3_l+c,z c,L=l.14, c,, c=1.18 (3c) 
coupling of hydrodynamic interaction with good solvent 
expansion. Most results therefore were obtained using The self-consistent Fourier configurational approach 
semi-empirical approaches or assuming either an affine was recently proposed 6'7 to study the non-ideal state and 
expansion or an asymptotic behaviour for the excluded applied to the description of the so-called crossover, or 
volume interaction ~. intermediate, region of chain expansion with z ~<2 in the 

On the other hand, 'exact' results could be obtained universal regime s. Neglecting local stereochemical 
using perturbation theory. This approach was employed details, the chain, is described as formed by N freely 
long ago to study, for example, the expansion factor ~s ~ jointed segments (or springs) of mean-square length l 2 
and ~n of the mean-square radius of gyration S 2 and of connecting adjoining beads. The general chain 
the hydrodynamic radius RH, respectively: configuration is decomposed in Fourier normal modes, 

which may be subsequently used to decouple the dynamic 
~ = $ 2 / S ~  (2a) equations. The chain free energy, written in the 

assumption of a Gaussian distribution for the perturbed 
* To whom correspondence should be addressed interatomic distances, is then minimized with respect to 
~'Permanent address: Comisi6n Nacional de Energia At6mica, 
Departamento de Reactores, Av. del Libertador 8250, (1429) Buenos all  t h e  conformational degrees of freedom. The resulting 
Aires, Argentina equations, giving the expansion ratios of the mean-square 
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normal mode amplitudes, are solved in a self-consistent with the corresponding antitransform given by 
way through a numerical procedure for both the linear 
and the cyclic chain. From these expansion ratios, all the 1 
equilibrium quantities may be obtained among which the R(j,t) = ~r~(q ' t )Q*(qJ)  (9b) , {q} 
radius of gyration, the hydrodynamic radius and the 
mean-square distances (r2k) and reciprocal average The asterisk indicates the complex conjugate. The 
separations (r~ ~) between beads j and k. The results a Fourier coefficients Q(qj) are, for the linear chain, 
were shown to be quite satisfactory in the crossover 
region by a comparison with other, more sophisticated 
theoretical approaches and with Monte Carlo Q(qj) = x//2 cos[q(j-  1/2)] 
simulations. 

In this paper, we report the study of the intrinsic q=rrnq/N nq= 1,2 . . . . .  N - 1  (10a) 
viscosity for linear and cyclic chains in the Zimm limit 

and for the cyclic chain using the same approach. We employ the numerical 
results previously obtained and express them in a suitable 
analytical form for computational convenience. The Q(qj)=eiqJ 
Zimm-Hearst scheme 2'9 with preaveraged hydrody- q=2nnq/N nq=l ,2  . . . .  N - 1  (10b) 
namic interaction will be followed, as it emerges naturally 
within the present approach. The results will be then In the following the appropriate transform and {q} set 
compared with extensive experimental results and with 
other theoretical equations recently proposed. We will will be used when dealing with the linear or the cyclic 
also briefly discuss the well-known Weill~les Cloizeaux chain. These modes are orthogonal even in non-ideal 
equation~0 conditions for a cyclic chain due to its symmetry, but are 

only approximately orthogonal for the linear chain in the 
~/3 ="~ 0C2(~H (4) presence of good solvent expansion. The hydrodynamic 

interaction has only a minor influence 12,13. However, we 
THEORETICAL APPROACH use the transforms of equations (10) for simplicity, 

neglecting non-orthogonality effects as in reference 8. 
Let us consider a polymer solution in steady flow In either case, we have ~1 
conditions with the fluid velocity going along x and its 
constant gradient ~ along z. In the absence of the polymer, 
the fluid velocity at the location of thej th bead at time t is <[R(q, 012) = Nl2 ~2(q) (11) 
therefore P(q) 

v~°)(j,t) = ~z(j,t) (5) where 

and the intrinsic viscosity is given by I /~(q) = 4 sinZ(q/2) (12) 

and ~l(q) is the expansion ratio of the q mode mean- 
N A  N . square amplitude, that is ~4 

[r/] = 7tls M j~_, (L(J,  t)z(j, t)) (6) 

&2(q)=([~(q,t)lE)/([~(q,t)12> o (13) 
where N A is the Avogadro's constant, M the polymer 
molecular mass and N the number of chain beads. In the Let us omit now the fluctuating Brownian force in 
abovefx(j,t) is the x component of the force exerted by the equation (7)" 
solvent upon the j th bead at time t and is equal to the 
intramolecular force experienced by it. f(j,t)= ~[R(j,t)- ¢°~(j,t)] 

The dynamic quantities appearing in equation (6) may (14) 
be obtained from the linear Langevin equation, written as _( 

(rj~ 1)f(k, t) 
6g~/s k = 1 

f(j,t) - ~ [R(j,t) - v(j,t)] = F(j,t) (7) k ~ j 

Here, F is the stochastic Brownian force, ( is the bead By multiplying by Q(qd) and summing over j, after 
friction coefficient, R(j,t) its vector position and v(j,t) the replacing f(k,t) with its antitransform using a notation 
fluid velocity in the absence of that particular bead. v(j,t) analogous to that used in equation (9), we arrive at: 
is given by the sum of the original velocity and the 
hydrodynamic perturbations due to the other beads 
expressed through the preaveraged Oseen tensor 1'2' 3. f(q, t )= ([R(q, t ) -  ~t0~(q, t)] - ((/6nqsl~(q, t)T(q) 

(15) 
1 N 

v(j,t)= v~°)(j,t) + m k ~ l ( r ~  X)f(k, ~= (8) --(~/6n~lsl){q, ~q} ~" ~(q',t) [F(q,q') 

k ¢ j  

where 
It is convenient now to introduce the Fourier normal 

1 1  modes to decouplethe Langevin equation . Let usdefine l N N 
in general 7 " ( q , q ' ) = ~  ~" Q(q,j)Q*(q',k)(r~k 1) (16a) 

N a~j~:k=l  

I~(q,t) = ~ R(j,t)Q(qj) (9a) 
j =1 T(q) - [F(q,q) (16b) 
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For the cyclic chain, using the transform in equation (10b) Of course, an analogous equation holds also for ~,(q,t) 
and the symmetry -1 _ - 1  _ - (r jk)  =(rlJ_kl)= (rN_lJ_kl). These without the term depending on the fluid velocity. 
equations reduce to Going back to the intrinsic viscosity, we first express 

equation (6) as a sum over the separate Fourier modes: 
T(q,q')=O if q#q' (17a) 

NA 1 ~(fx(q,t)~,(q,t) ) (25) 
N/2 [q] ~rlS M ~ {q} T(q)=2/ Y', cos(qlj-kl)(rly2kl> (17b) = 

l j - k [  = 1 

For the linear chain ~(q,q')#O, however, we neglect From equations (20), (22) and (23), together with 
altogether the last sum in equation (15), thus following equation (5), we eventually get: 
the Zimm-Hearst approach 2'9. This corresponds to 
neglecting the off-diagonal elements of the matrix G in the NAkBT_ 
language of reference 12. In ideal conditions, this gives a [~/] = ,, • ,  ~ ( q )  Zm~ls {~} very small error (21 .5% at most), which quickly (26) 
decreases with increasing mode number. Therefore, we NA~I 2 ~2(q) 
will write henceforth: - 6Mqs l~(q)v(q) 

~(q,t)=~i-~[R(q,t ) -~°)(q,t)] (18) The excluded volume expansion influences the intrinsic 
viscosity in two ways: first, because of the change in the 

with elastic potential through the explicit appearance of a2(q), 
v(q) = 1 + ((/6nqsl)T(q) (19) and secondly because of the change in the hydrodynamic 

interaction through the perturbed reciprocal averages 
where ~(q) is given by equation (16) for the linear chain appearing in v(q) (equations (16), (17) and (19)). Within 
and by equation (17b) for the cyclic chain, the Gaussian approximation, these are given by 

As for the intramolecular force in equation (7), it was 
obtained in reference 11 from the general Boltzmann (r~ ~ ) = (6/n)~/2 (r~ k) - l/2 (27) 
statistical weight of a perturbed chain within the 
Gaussian approximation. In Fourier space, it is given by: and the mean-square distances are given by 

3kaT P(q)l~(q,t) (20) r 2 12 ~2(q) . , k 2 
~(q,t)= 12 ~2(q) ( j k )=~  ~ -~q~lQ(q,J)--Q(q )[ (28) 

The Langevin equation for the q mode is therefore Thus the set {0~2(q)}, containing the expansion ratios of 
written in the x projection: the normal modes mean-square amplitudes (see equation 

(13)), completely determines the intrinsic viscosity. In 
3kB T P(q) ( " ~o) 12 ~2(q,t)+~-~[Yc(q,t)-v~ (q,t)]=X(q,t)(21) turn, it may be obtained from self-consistent energy 

minimization within the Fourier configurational 
approach a. 

where )~(q,t)= ~x(q,t)/v(q) is the x component of the 
Brownian force. It is assumed to be uncorrelated with the 
other components and its quadratic average is specified NUMERICAL PROCEDURE IN THE ZIMM LIMIT 
through the fluctuation--dissipation theorem a s: 3 It may be seen from equations (26) and (19) that ~, 

v~q) depends in general on two adimensional variables: the 
('X(q, t)X*(q', t')) = 2NkBT A(q - q')b(t- t') (22) excluded volume parameter z, which uniquely determines 

~2(q) in the universal regime s (N~  oo) and the draining 
A and 6 stand for the Kronecker delta and the Dirac delta parameter ((/6nqsl). However, for large molecular 
function, respectively, weights the latter effectively disappears, at least for 

The general solution of equation (21) is formally given collective modes. In this case ~/'(q) >> 1, and increases as 
by the value of N increases. Therefore, since ((/6nqsl) is 

usually of order unity, we may put 

~(q, t) = ~(q, 0) exp[ - t/z(q)] 
7"(q) (N ~ ~ )  (29) v(q) 

! On,st +~-f dt'[£(q,t')+ ~v~°)(q't'!]exp[-(t-t')/z(q)] (23) v(q) corresponding to the non-draining, or Zimm, limit 2. 
o From equation (26) we get 

where the relaxation times z(q) are given by [q]---- NAl31t S" ~2(q) (30) 
-M ~ Iz(q)7"(q) 

(l ~ ~2(q) 
z(q)=3kBT I~(q)v(q) (24) Also, we can go to the continuous limit and replace the 
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sums in equations (16) and (17) with integrals: (ii) Cyclic chain 

1 1 ~c2(q) = O~i2nt(q) + ~2 -2 
f f [~c,,,(q)-%t(q)]/(nq-1) ~FL(q)=Nl dx dy(r~uy)cos(nnqx)cos(~n~y) (31) (36a) 

' q = 2rCnq/N nq = 2,3 . . . . .  N - 1 
0 0 

where x =j/N, y= k/N and q = 7~nq/N. where for the second mode 

~2 1/2 O~c,ii(q) = [1 + 11Y+ 55E 2 + 52Z3] 2/15 (36b) 
f,  

7"c(q) =2Nl I cos(2nn~x)(rfcl)dx (32) For the internal modes ~2 %t(q) is still given by equation 
J 0 (35c), whereas the first mode must be treated separately: 

where x = [ k - j [ / N  and q=2nnq/N. E2j(q)= [1 + 15~+70.8~2+30523] 2/15 (36c) 
In the unperturbed state the above integrals may be 

evaluated analytically2'4: Also, due to the great computational accuracy and 
computer  time required to numerically evaluate the 

TL(q) = 2(12S/lrrlq)l/2rc(l~rlq) -S(ztnq)/27rnq] (33a) double integrals of equation (31), we used the linear chain 
expression only for the first 20 modes. For higher modes 

Tc(q) = (6nN) 1/2cos(rcnq)Jo(ltnq) (33b) we employed equation (32) with half integer values of nq, 
that is putting effectively q = lZnq/N as for the linear chain. 

where C(x) and S(x) are the Fresnel integrals, defined as This entailed throughout errors of less than 0.6 ~o for the 
relaxation times. x 

g b  

C(x) = (27z)- l / 2 jdz  cos Z/Z 1/2 

id 

o RESULTS AND DISCUSSION 
(34) 

x The expansion ratios 3_  [~]]/[~1]0 for the linear and the 
S(x) = (2r 0-1/2 dz sin z/z ~/2 cyclic chain in the crossover region are shown in Figure 1 

as a function of the universal variable z. The two curves 
o are essentially coincident for z < 0.8, the linear chain then 

and Jo(x) is the Bessel function of order zero. shows a larger ~a for increasing values of z. Actually, this 
In equations (31) and (32) the lower limits of is opposite to what is found at low values of z (see later). 

integration were set to zero, instead of 1/N. This implies The differences, however, are very small, less than about 
that the condition j:/ :k in equations (16a) and (17b) is 3~o at z = 2 .  This trend is contrary to what would be 
ignored, corresponding to the inclusion of the expected if viscosity were mostly dictated by the coil's 
hydrodynamic self-interaction. However, this has a size. In fact, for a given z the cyclic chain always has a 
negligible effect as long as N ~ ~ ,  and opens the way to a larger ~2 than the linear chain s. 
universal description of chain dynamics. Moreover,  it has For z ~ 0  our curves may be expressed as in equation 
the great theoretical advantage of treating the polymer (3c) with C~,L = 1.09 and c,~,c = 1.12; c~, L is very close to the 
chain and the solvent on the same footing; in fact, the value 1.06 which is obtained perturbatively within the 
latter is assumed to be a structureless, incompressible 
continuum in the derivation of the Oseen tensor 1'3. 

We carried out the numerical calculations of the 
l intrinsic viscosity (from equations (30), (12) and (31) or 2.s 1 

(32) together with equations (27) and (28)) using for the , ' / j  
2 b function ~ (q) the universal results previously obtained in ? / / 

the crossover region s. Defining 2= 3fi(2n/q)l/2/4, with fl D F " ~ /  ' 

such that z =  3fix/N~4, we used the following analytical 2.0 ,' ." 
expressions closely fitting the numerical results for , ' , / [ ' , :  
computational convenience" ~ = "l,,, / l /  C y 

(i) Linear chain ,, ."./'~ B 
1.5 " ~  

d~q) = o~2t(q) q_ [~2(q) _ o~2t (q) ] / r /q  (35a) " " /  

q = nnq/N nq = 1,2 . . . . .  N - 1 
1 .0  I I I I 

where for the first mode 0.0~ 0.02 o.os 0.1 0.2 o.s ~ 2 
Z 

~2(q) = [1 + 7.52+ 1822+ 38~ 3] 2/~ s (35b) Figure 1 The expansion f a c to r  ct~= [q]/[r/] o plotted v e r s u s  z in the 
crossover region for the linear open (Op) and cyclic (Cy) chains. The 

and for internal modes: curves proposed by Douglas and Freed ~ 7 (DF) and by Barrett x8 (B) for 
linear chains are also shown. The DF curve for cyclic chains lies above 
their curve for linear chains. However it is very close to it and is not 

~2t(q) = [1 + 10~+ 287. 2 d- 52-~3] 2/15 (35c) shown here for clarity 
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3 I-- relevant in very good solvents, so that ~a could no longer 

/ • be a universal function of z, as suggested first by Miyaki 
and Fujita 2°. 

• For  a better comparison between the linear and the 
• cyclic chain, we show in Figure 3 the ratio gn: 
o |  

0~3 3 • • •  gn = [t/]c/[r/]L =gn,0 n,c/Otn,L (39) 

~ 2 -- • 6  The ideal state value gn o is equal within the numerical 
• accuracy to that of Bloomfield and "Zimm 4, namely 0.659. 

• It is remarkable that, as anticipated, we calculate a slight 
increase of g7 at low z, followed by a larger drop for 
z>0.2 ,  whereas Bloomfield and Zimm 4 with an affine, 
uniform expansion model predict 2t a monotonous  

' decrease of gn and Douglas and Freed predict an increase 
to an asymptotic, constant value. An initial t~prise is 

1'_ I I required by perturbation theory, which to  the~first order 
0 1 2 in z gives 

z 
3 3 ctn.c/Otn. L = i + (cn, c - cn,L)z = 1 + 0.038z (40) 

Figure 2 A comparison of the calculated curve of =~ versus z for linear 
chains with experimental data 19 obtained from different polymers in whereas the drop at larger z has been observed 
various solvents. The symbols are the same used in the original figure ~9 
from the book of Yamakawa a. The results collected by Miyaki and experimentally 22'24, although some conflicting reports 
Fujita 2° are not shown, but follow the same trend tending to be also exist 25 and the situation does not seem to be 
somewhat smaller for z ~ 2 with a slightly larger scatter at high z completely settled. This apparently odd 'behaviour may 

be understood by considering that at low values of z the 
Z imm-Hears t  scheme t 6. These two coefficients show that effect of hydrodynamic interaction embodied in 7"(q) 
for z ,~ 1 the cyclic chain displays a slightly larger increase (equation (16)) changes very little with respect to the ideal 
of intrinsic viscosity, state and g7 follows the larger increase in dimensions of 

For  the sake of comparison, we also show in Figure 1 the cyclic chainS. Thec°n t ra ry  is true at hig her values0fz,  
the theoretical curves proposed by other authors in the where the larger decrease of hydrodynamic interaction for 
Zimm limit: the linear chain is more relevant. 

A quantity frequently referred to is the Flory and Fox 
(i) Douglas and Freed equations t7 (DF): viscosity constant ~,  defined by 1'¢ 

a a 32z/3 It/] L ---- dPL(6S2)a/2/M (4 la) 
ct3=(l+ 32z/3) / [l+an(l+---3-~z/3)l z~<0.15 

1-?/] c = dpc(12S2)3/2/M (41b) 
(37a) 

The ratio ¢I)/~ o 3 a =~n/Cts for linear and cyclic chains is 
a = (6.44 lz)3(2v - 1) (  1 "q'- an) z >/0.75 

CZ n shown as a function of z and of es in Figures 4a and b, 
(37b) respectively. The calculated ideal chain values are again 

equal, within the numerical accuracy, to those obtained 
where an= -0 .276  for the linear chain and an= -0 . 264  by Bloomfield and Zimm4, tha t  is 00,L=2.812 x 1023 and 
for the cyclic chain and v=0.592; ¢o,c = 1.852 x 1023. The curves obtained from the DF  

(ii) Barrett equation is (B): 

=3 = (1 + 3.8z + 1.9z2) 3/10  (linear chain) (38) 0.67 - 

The general form of the D F  equations was obtained 
through renormalization group arguments. The a n 
coefficients in equation (37) were fitted to reproduce the 
perturbation theory results for z--*0 (the values cn. L = 1.06 0.66 
and Cn.c= 1.18 were chosen16'17). The Barrett equation 
for the linear chain, on the other hand, was proposed from 
a combination of Monte Carlo and perturbative results 
(with c~,L = 1.14) for evaluating the reciprocal averages of o. 65 
interest, followed by a careful numerical solution of the 
Kirkwood-Riseman integral equation a'~s. The three 
curves are in rather good agreement with each other. Our  
results are closer to those of Barrett. 0.64 ~ 

Our curve (see Figure 2) is also in good agreement with 0.01 0.02 0.05 0.1 o. 2 0.5 1 2 
experimental results~ 9,2o on various polymers in different z 
solvents, especially in the range 0 ~< z ~< 1.5. As a word of Figure 3 The ratio g, = [t/]C/[~/]L of the intrinsic viscosity of cyclic and 
caution, we note that partial draining effects may become linear chains p l o t t e d  v e r s u s  z 
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a within 0.6 % th roughou t  the range 0 ~ z ~ 2: 

1.0 ~ ~ . _ . - - _ . . _ . / O p  otaL=(l+3.64z+3.1022) 3 / 1 ° ,  (43a) 

0.9 ~ / at~ c = (1 + 3.72z + 2.75z 2) 3/1 o (43b) 
y 0.8 cy  _ . 

0.7 C O N C L U S I O N S  

o.6 c y - " ~  The  self-consistent Four ie r  configurat ional  approach ,  
together  with the use of  the Gauss ian  approx ima t ion  for 

0.5 ~ , J ~ , J i the in tera tomic distances, permit ted  us to calculate the 
3 of the intrinsic viscosity for l inear and o. 01 ,0.02 o..~os o. i 8.2 o. 5 1 2 expansion ratio or, 

z cyclic chains.  O u r  results are in very good  agreement  with 
avai lable exper imenta l  da ta  in the crossover  region, even 

1.0 b bet ter  than  those previously obta ined  8 for the radius 
~ ~ [ [  O_p_ of gyra t ion  with the same method .  In  fact, due to the 

f~'~..-. . . . .  Gauss ian  approx ima t ion ,  the expansion factor  of  the 
most  collective no rma l  mode  ampli tudes ,  and in 

o.9 ~ ' " " - / -  . . . . . . . . . . . . . . . . . . . .  par t icular  that  of  the first one, may  be slightly 
overest imated.  If that  were the case, ~s 2 would be 
somewhat  overes t imated too,  by more  than ot 3. In fact, in 
the first case the first m o d e  is much  more  imI20rtant than 

~ o. in the second case, where the function T(q), slowly 
decreasing with increasing q (see equat ions (16) and (17)), 
buffers its impor tance  c o m p a r e d  to that  of  the other  

cy ~ ~ modes.  This considerat ion,  speculative as it is, might  
0. explain the reason for the small discrepancies with 

exper iments  for the linear chain (see, for example,  Figures 
4b and 5). 

0.~ I ~ l , ' We finally note that  the Weil l~les  Cloizeaux 
~.~ 1.1 1.2 1.3 1.4 1.5 expression 1° (equation (4)) seriously fails, at least for 

~s linear chains.  This may  be seen in the crossover  region 

Figure 4 (a) The ratio of the viscosity constants ~/~o = ~t~/~t~ (see from our  values of  ~a, which are < =g for z < 0.7 and  only 
equation (41)) for linear open (Op) and cyclic (Cy) chains as a function of marginal ly  larger 8 for higher values of z. Also, equat ion 
z. ( ), the present results; ( - - - )  the results of Douglas and (4) does not  fit with exact per turbat ive  results for z - , 0 ,  in 
Freed aT. (b) The ratio of the viscosity constants versus ~s that  to the first order  in z it would require: 

equat ions  17 are also shown. In either case, ~ / ~ o  is c~3"~ ~t~tH = 1 + (Cs + CH)Z = 1 + 1.885Z (44) 
predicted to decrease mo~e in the cyclic than  in the linear 
chain,  in quali tat ive agreement  with Bloomfield and 

z ~ 0 ,  first order  pe r tu rba t ion  theory yields 0.4 / Z imm4.  F o r  

/ . 'J" 

q~/~o = ct3/~3= 1 + ( c , -  3Cs/2)z (42) / ..- 
/ "  s, J 

O. 3 / -""  0 
and therefore the initial slope in the plot  ~ / O  o versus ~s / / ~ . " / ~ " ~  
(Figure 4b)) is 2(c,/cs) - 3, therefore steeper for the cyclic / S ' "  
chain. ~, : / " . . " /  / 

The  exper imental  results for ~ / ~ o  versus ~s show too ~ 0.2 
much  scatter t o  ,permit any rnearfiagful compar ison .  ~ / " "  
However  our  curve lies somewhat  below the . / . . ~ ' < "  
exper imental  points  ~9, a l though following the correct . / . . ~ / ~ - ~  
t rend. o. 1 

3 ~3 is shown in Figure 5, The  related plot  of ct, versus 
where ou r  results are compa red  to the exper imenta l  da ta  
repor ted by Miyaki  and  Yujita z~ and  by Y a m a k a w a  ~9 0.0 L ~ , ~ 

(only a best-fit line th rough  the experimental  points  is 0.0 0.1 0.2 0.3 0., 0.~ 
repor ted  here for clarity). The  calculated curve for the ,og ~s 
linear chain compares  ra ther  satisfactorily with the results 
quo t ed  by Miyaki  and Fuji ta,  especially for small Figure5 Calculatedplotof~t3versus=]forlinearopen(Op)andcyclic 

(Cy) chains ( ). Experimental results from linear open chains are 
expansion,  but  increasing discrepancies are present  for shown as best-fit lines for simplicity. ( ..... ) is the curve taken from the 

19 1 larger  ~3. Incidental ly,  part ial  draining effects 2° m a y  be analogous plot of Yamakawa ; ( . . . . .  ) is the curve from the data of 
par t ly  responsible for the differences present  a m o n g  the Miyaki and Fujita 2° for atactic polystyrene in cyclohexane and 
experimental  results, methylethylketone. We note incidentally that other results of Miyaki 

We summar ize  our  numerical  results shown in Figure I and Fujita ~° for polystyrene in,benzene having log ~>0.33 show a 
roughly parallel shift to larger ct, values and have a smaller slope than 

with the following analytical expressions,  accurate  to the data collected by Yamakawa .9 
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